
Lecture 2: Simple Mixtures
14-09-2010

• Aim of the lecture: Express chemical potential of the 
mixture in terms of its composition (molar fraction)

• Lecture:
– partial molar quantities
– thermodynamics of mixing
– ideal solutions
– colligative properties
– activities
– Debye-Hückel limiting law
– problems



Partial molar quantities
• we know how to describe phase equilibrium in the 

case of a single substance. 
How it can be done in the case of mixtures?

• partial molar quantities: contribution of each 
component to the properties of mixtures
our final goal is chemical potential, but let’s start with some 
simpler ones… 

• Example: partial gas pressures (Dalton’s Law): The 
pressure exerted by mixture of gases if the sum of 
partial pressures of the gases.

...,A Bp p p= + + pxp ii = nnx ii /=and, where



Partial molar volume
• How the total volume changes when 

we change the amount of one of the 
components

• Observation: If we add say 18 cm3 of 
water to water the total volume 
increase will be exactly 18cm3, but if 
we add it to ethanol the increase 
would be just 14 cm3 . 
Partial molar volume depends on 
composition.

• Partial molar volume:
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Partial molar volume
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Volume change for a binary mixture:

the partial volume 
is a slope of the 
total volume graph 
vs. amount of 
moles.
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How we can calculate the total volume at a 
given concentration?
- Let’s follow a path of constant cocentration:

can be negative



Partial molar Gibbs energy
• The concept of partial molar quantity can be extended to any 

extensive state function: 
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• Fundamental equation of chemical thermodynamics:

,max

...
...

A A B B

add A A B B

dG dn dn
dw dn dn

μ μ
μ μ

= + +
= + +

• At p, T=const

Chemical potential definition 

• Fixing the composition the same we can prove that:



Differential form of thermodynamic functions
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Partial molar quantities
• The Gibbs-Duhem equation

A A B B A A B BdG dn dn n d n dμ μ μ μ= + + +A A B BG n nμ μ= +

At P, T=const A A B BdG dn dnμ μ= +

Thus, as G is state function: 0A A B Bn d n dμ μ+ =

Gibbs-Duhem
equation:
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Let’s find change in Gibbs energy with infinitesimally change in composition:

The same is true for all partial molar quantities 

Gibbs-Duhem equation  shows that chemical potential of one compound 
cannot be changed indepentently of the other chemical potentials.
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Thermodynamics of mixing
• The Gibbs energy of mixing

Let’s consider mixing of 2 perfect gases at constant pressure p:

0
0ln pRT

p
μ μ= +For each of them:

A A B BG n nμ μ= +and

After mixing the energy difference:
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Using Dalton’s law:
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Thermodynamics of mixing
• entropy of mixing
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• enthalpy of mixing

0mix mixH G TdSΔ = Δ + =

The driving force of mixing is a purely entropic one!



Chemical potential of liquid
• Ideal solutions
Let’s consider vapour (treated as perfect gas) 
above the solution. At equilibrium the chemical 
potential of a substance in vapour phase must be 
equal to its potential in the liquid phase

* 0 *lnA A ART pμ μ= +For pure substance:

0 lnA A ART pμ μ= +In solution:

* ln A
A A

pRT
p
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Raoult’s law: *
A A Ap x p=

Mixtures obeying Raoult’s law called ideal solutions

Francouis Raoult experimentally found that:

* lnA A ART xμ μ= +



Chemical potential of liquid

' A Ak p kx=

rate of condensation

rate of evaporation

• Molecular interpretation of Raoult’s law
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Chemical potential of liquid

Similar liquid
Dissimilar liquid 
often show strong 
deviation



Chemical potential of liquid
• Ideal-dilute solutions: Henry’s law

A A Ap x K=
empirical constant, not the 

vapour pressure 

In a dilute solution the molecule of solvent 
are in an environment similar to a pure 
liquid while molecules of solute are not!



Chemical potential of liquid
• Using Henry’s law

A A Ap x K=

Example: Estimate molar solubility of 
oxygen in water at 25 0C at a partial 
pressure of 21 kPa.

4 -1
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21kPa 2.9 10  mol kg
7.9 10  kPa kg mol
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22 H O[O ] 0.29Ax mMρ= =



Colligative properties

• Elevation of boiling point
• Depression of freezing point
• Osmotic pressure phenomenon

All stem from lowering of the chemical potential of the 
solvent due to presence of solute (even in ideal 
solution!)

Larger



Colligative properties
• Elevation of boiling point
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Let’s  take derivative  of both sides and apply 
Gibbs-Helmholtz equation:
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Colligative properties
• Depression of freezing point
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Cryoscopic constant

Can be used to measure molar mass of a solute



Colligative properties
• Dealing with boiling and cryoscopic constants

if we need to find boiling/freezing temperature change

- Calculate the molality of solute
- Multiply by the relevant constant of solvent

can be also used to calculate molar mass



Colligative properties
• Solubility
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Colligative properties: Osmosis
• Osmosis – spontaneous passage of pure solvent into solution 

separated by semipermeable membrane

Van’t Hoff equation: [ ] , [ ] /BB RT B n VΠ = =
molarity



Osmosis
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Osmosis: Examples

• Calculate osmotic pressure 
exhibited by 0.1M solutions of 
mannitol and NaCl.

Mannitol (C6H8(OH)6)[ ] , [ ] /BB RT B n VΠ = =



Osmosis: Examples

Isotonic conditions

Hypotonic conditions:
cells burst and dye
haemolysis (for blood)

Internal osmotic pressure keeps 
the cell “inflated” 

Hypertonic conditions:
cells dry and dye



Application of Osmosis
• Using osmometry to determine molar mass of a macromolecule

Osmotic pressure is measured at a series of mass concentrations c and a plot  of
vs. c  is used to determine molar mass.  
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Membrane potential

• Electrochemical potential
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• Example: membrane potential

Na+ salt of a protein



Activities
• the aim: to modify the equations to make them applicable to real solutions
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Generally:
vapour pressure of A above solution

vapour pressure of A above pure A

* * lnA A ART xμ μ= +

For ideal solution

(Raoult’s law)

For real solution
* * lnA A ART aμ μ= + activity of A
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Activities
• Ideal-dilute solution: Henry’s law B B Bp K κ=
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• Real solutes
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Example: Biological standard state

• Biological standard state: let’s define chemical potential of hydrogen at pH=7
0 ln

H H H
RT aμ μ+ + += +

0 07 ln(10) 40 /
H H H

RT kJ molμ μ μ+ + += − = −



Ion Activities
0 lnRT aμ μ= +

standard state: ideal solution at molality b0=1mol/kg

0

ba
b

γ=

0 ln ln lnidealRT b RT RTμ μ γ μ γ= + + = +

ideal solution of the same molality b

Alternatively:

In ionic solution there is no experimental way to separate contribution of cations 
and anions

lnideal ideal
mG RTμ μ μ μ γ γ+ − + − + −= + = + +

ln ; lnideal idealRT RTμ μ γ μ μ γ+ + ± − − ±= + = +

2γ ±

In case of compound MpXq: lnideal p q
m mG p q G RTμ μ γ γ+ − + −= + = +



Debye-Hückel limiting law

• Coulomb interaction is the main reason for 
departing from ideality

• Oppositely charged ions attract each other 
and will form shells  (ionic atmosphere) 
screening each other charge

• The energy of the screened ion is lowered 
as a result of interaction with its 
atmosphere



Debye-Hückel limiting law
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Example: calculate mean activity coefficient of 5 mM solution of KCL at 25C. 
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In a limit of low concentration the activity coefficient can be calculated as:



Debye-Hückel limiting law
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Extended D-H law:



Problems (to solve in class)
• 5.2a At 25°C, the density of a 50 per cent by mass ethanol–

water solution is 0.914 g cm–3. Given that the partial molar 
volume of water in the solution is 17.4 cm3 mol–1, calculate the 
partial molar volume of the ethanol

• 5.6a The addition of 100 g of a compound to 750 g of CCl4
lowered the freezing point of the solvent by 10.5 K. Calculate 
the molar mass of the compound.

• 5.14a The osmotic pressure of solution of polystyrene in 
toluene were measured at 25 °C and the pressure was 
expressed in terms of the height of the solvent of density 
1.004g/cm3. Calculate the molar mass of polystyrene:
c [g/dm3] 2.042  6.613  9.521 12.602 
h [cm] 0.592  1.910  2.750  3.600

• 5.20(a) Estimate the mean ionic activity coefficient and activity 
of a solution that is 0.010 mol kg–1 CaCl2(aq) and 0.030 mol 
kg–1 NaF(aq). 




